Current concepts and new developments for autologous in vivo endothelialisation of biomaterials for intravascular applications.
نویسندگان
چکیده
Circulating endothelial progenitor cells (EPCs) in the peripheral blood of adults represent an auspicious cell source for tissue engineering of an autologous endothelium on blood-contacting implants. Novel materials biofunctionalised with EPC-specific capture molecules represent an intriguing strategy for induction of selective homing of progenitor cells. The trapped EPCs can differentiate into endothelial cells and generate a non-thrombogenic surface on artificial materials. However, the success of this process mainly depends on the use of optimised capture molecules with a high selectivity and affinity. In recent years, various biomedical engineering strategies have emerged for in situ immobilisation of patient's own stem cells on blood contacting materials. The realisation of this in vivo tissue engineering concept and generation of an endothelium on artificial surfaces could exceedingly enhance the performance of not only small calibre vascular grafts and stents, but also, in general all blood-contacting medical devices, such as heart valves, artificial lungs, hearts, kidneys, and ventricular assist devices.
منابع مشابه
Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques.
The engineering of living tissues in vivo requires new concepts in cell culture technology. In contrast to conventional cell cultures, the development of tissues depends on a three-dimensional arrangement of cells and the formation or synthesis of an appropriate extracellular matrix. Special emphasis is given to the major role of the extracellular matrix and cell differentiation in an artificia...
متن کاملNanosized biomaterials for regenerative medicine
This review discusses recent developments in the field of nanosized biomaterials and their use in tissue regeneration approaches. The aim is to provide an overview of the research focused on nanoparticle-based strategies to stimulate regeneration. In particular, nanoparticles improve the regenerative capabilities of biomaterials offering ways to control surface and mechanical properties. Moreov...
متن کاملNanosized biomaterials for regenerative medicine
This review discusses recent developments in the field of nanosized biomaterials and their use in tissue regeneration approaches. The aim is to provide an overview of the research focused on nanoparticle-based strategies to stimulate regeneration. In particular, nanoparticles improve the regenerative capabilities of biomaterials offering ways to control surface and mechanical properties. Moreov...
متن کاملMagnetic nanobeads: Synthesis and application in biomedicine
Nanobiotechnology appears to be an emerging science which leads to new developments in the field of medicine. Importance of the magnetic nanomaterials in biomedical science cannot be overlooked. The most commonly used chemical methods to synthesize drugable magnetic nanobeads are co-precipitation, thermal decomposition and microemulsion. However monodispersion, selection of an appropriate coati...
متن کاملTissue engineering of bone: the reconstructive surgeon's point of view
Bone defects represent a medical and socioeconomic challenge. Different types of biomaterials are applied for reconstructive indications and receive rising interest. However, autologous bone grafts are still considered as the gold standard for reconstruction of extended bone defects. The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European cells & materials
دوره 21 شماره
صفحات -
تاریخ انتشار 2011